skip to main content


Search for: All records

Creators/Authors contains: "Qu, Liangliang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Photonic balls are spheres tens of micrometers in diameter containing assemblies of nanoparticles or nanopores with a spacing comparable to the wavelength of light. When these nanoscale features are disordered, but still correlated, the photonic balls can show structural color with low angle-dependence. Their colors, combined with the ability to add them to a liquid formulation, make photonic balls a promising new type of pigment particle for paints, coatings, and other applications. However, it is challenging to predict the color of materials made from photonic balls because the sphere geometry and multiple scattering must be accounted for. To address these challenges, we develop a multiscale modeling approach involving Monte Carlo simulations of multiple scattering at two different scales: we simulate multiple scattering and absorption within a photonic ball and then use the results to simulate multiple scattering and absorption in a film of photonic balls. After validating against experimental spectra, we use the model to show that films of photonic balls scatter light in fundamentally different ways than do homogeneous films of nanopores or nanoparticles, because of their increased surface area and refraction at the interfaces of the balls. Both effects tend to sharply reduce color saturation relative to a homogeneous nanostructured film. We show that saturated colors can be achieved by placing an absorber directly in the photonic balls and mitigating surface roughness. With these design rules, we show that photonic-ball films have an advantage over homogeneous nanostructured films: their colors are even less dependent on the angle. 
    more » « less
  2. Effective cancer therapies often demand delivery of combinations of drugs to inhibit multidrug resistance through synergism, and the development of multifunctional nanovehicles with enhanced drug loading and delivery efficiency for combination therapy is currently a major challenge in nanotechnology. However, such combinations are more challenging to administer than single drugs and can require multipronged approaches to delivery. In addition to being stable and biodegradable, vehicles for such therapies must be compatible with both hydrophobic and hydrophilic drugs, and release drugs at sustained therapeutic levels. Here, we report synthesis of porous silicon nanoparticles conjugated with gold nanorods [composite nanoparticles (cNPs)] and encapsulate them within a hybrid polymersome using double-emulsion templates on a microfluidic chip to create a versatile nanovehicle. This nanovehicle has high loading capacities for both hydrophobic and hydrophilic drugs, and improves drug delivery efficiency by accumulating at the tumor after i.v. injection in mice. Importantly, a triple-drug combination suppresses breast tumors by 94% and 87% at total dosages of 5 and 2.5 mg/kg, respectively, through synergy. Moreover, the cNPs retain their photothermal properties, which can be used to significantly inhibit multidrug resistance upon near-infrared laser irradiation. Overall, this work shows that our nanovehicle has great potential as a drug codelivery nanoplatform for effective combination therapy that is adaptable to other cancer types and to molecular targets associated with disease progression.

     
    more » « less
  3. Droplet microfluidics offers exquisite control over the flows of multiple fluids in microscale, enabling fabrication of advanced microparticles with precisely tunable structures and compositions in a high throughput manner. The combination of these remarkable features with proper materials and fabrication methods has enabled high efficiency, direct encapsulation of actives in microparticles whose features and functionalities can be well controlled. These microparticles have great potential in a wide range of bio-related applications including drug delivery, cell-laden matrices, biosensors and even as artificial cells. In this review, we briefly summarize the materials, fabrication methods, and microparticle structures produced with droplet microfluidics. We also provide a comprehensive overview of their recent uses in biomedical applications. Finally, we discuss the existing challenges and perspectives to promote the future development of these engineered microparticles. 
    more » « less
  4. Abstract

    Inhomogeneous microcapsules that can encapsulate various cargo for controlled release triggered by osmotic shock are designed and reported. The microcapsules are fabricated using a microfluidic approach and the inhomogeneity of shell thickness in the microcapsules can be controlled by tuning the flow rate ratio of the middle phase to the inner phase. This study demonstrates the swelling of these inhomogeneous microcapsules begins at the thinnest part of shell and eventually leads to rupture at the weak spot with a low osmotic pressure. Systematic studies indicate the rupture fraction of these microcapsules increases with increasing inhomogeneity, while the rupture osmotic pressure decreases linearly with increasing inhomogeneity. The inhomogeneous microcapsules are demonstrated to be impermeable to small probe molecules, which enables long‐term storage. Thus, these microcapsules can be used for long‐term storage of enzymes, which can be controllably released through osmotic shock without impairing their biological activity. The study provides a new approach to design effective carriers to encapsulate biomolecules and release them on‐demand upon applying osmotic shock.

     
    more » « less